MATH 53H - Solutions to Problem Set II

1. It is clear that $\operatorname{ker}(A-\lambda I)^{v} \subseteq \operatorname{ker}(A-\lambda I)^{k}$ for $k \geq v$. Thus in order to prove equality, it suffices to show the reverse inclusion. Using the fact that $\operatorname{gcd}\left((x-\lambda)^{k}, p_{A}(x)\right)=(x-\lambda)^{v}$ and the Euclidean algorithm, there exist polynomials f, g such that

$$
f(x)(x-\lambda)^{k}+g(x) p_{A}(x)=(x-\lambda)^{v}
$$

Therefore, since $p_{A}(A)=0$ by Cayley-Hamilton, we get $f(A)(A-\lambda)^{k}=$ $(A-\lambda)^{v}$, which in turn clearly implies that $\operatorname{ker}(A-\lambda I)^{k} \subseteq \operatorname{ker}(A-\lambda I)^{v}$. So we are done.
2. (i) We have the following:

Lemma For $B, C \in M_{n \times n}(\mathbb{C}), \operatorname{tr}(B C)=\operatorname{tr}(C B)$.
Proof It is not hard to check that

$$
\operatorname{tr}(B C)=\sum_{1 \leq i, j \leq n} B_{i j} C_{j i}=\operatorname{tr}(C B)
$$

Applying the lemma to $B=S^{-1} A, C=S$ we get

$$
\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}\left(S S^{-1} A\right)=\operatorname{tr}(A)
$$

(ii) Write $A=L+N$, where L is diagonalizable, N is nilpotent and L, N commute. Then $L=P^{-1} D P$ where D is a diagonal matrix with entries the eigenvalues of $A \lambda_{1}, \ldots, \lambda_{n}$. We have then $\exp (t L)=P^{-1} \exp (t D) P \Rightarrow$

$$
\operatorname{det}(\exp (t L))=\operatorname{det}(\exp (t D))=e^{t\left(\lambda_{1}+\ldots+\lambda_{n}\right)}=e^{t \operatorname{tr}(A)}
$$

where we have used that $\exp (t D)$ is diagonal with entries $e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}$ and the fact that the trace of a matrix equals the sum of its eigenvalues.
Since N is nilpotent, hence $N^{n}=0, \exp (t N)$ is defined by a finite sum and therefore its entries are polynomials in t. Hence $f(t)=\operatorname{det}(\exp (t N))$ is a polynomial in t. Now f satisfies $f(t+s)=\operatorname{det}(\exp ((t+s) N))=$ $\operatorname{det}(\exp (t N) \exp (s N))=\operatorname{det}(\exp (t N)) \operatorname{det}(\exp (t N))=f(t) f(s)$ and thus for $t=s$ we have $f(2 t)=f(t)^{2}$. Considering the degree of f this is only possible when f is constant. Hence $f(t)=f(0)=\operatorname{det}(\exp (0))=\operatorname{det}(I)=1$, which shows that

$$
\operatorname{det}(\exp (t N))=1 \forall t
$$

Combining the above, we obtain

$$
\begin{aligned}
\operatorname{det}(\exp (t A)) & =\operatorname{det}(\exp (t(L+N)))=\operatorname{det}(\exp (t L) \exp (t N))= \\
& =\operatorname{det}(\exp (t L)) \operatorname{det}(\exp (t N))=e^{t \operatorname{tr}(A)}
\end{aligned}
$$

3. Suppose first that A is diagonalizable. Then there is a basis of eigenvectors of A for \mathbb{C}^{n}. For any v in this basis, we have $\left(A-\lambda_{i}\right) v=0$ for some i, and hence $f(A) v=0$. Thus $f(A)=0$ since it maps all basis vectors to zero.

Conversely suppose that $f(A)=0$. Let v_{i} denote the multiplicity of λ_{i}. Then since $\operatorname{gcd}\left(f(x),\left(x-\lambda_{i}\right)^{v_{i}}\right)=x-\lambda_{i}$, there exist polynomials p, q such that

$$
p(x) f(x)+q(x)\left(x-\lambda_{i}\right)^{v_{i}}=x-\lambda_{i}
$$

Plugging in A we get $q(A)\left(A-\lambda_{i} I\right)^{v_{i}}=A-\lambda_{i} I$. As in Exercise 1 this gives

$$
\operatorname{ker}\left(A-\lambda_{i} I\right)^{v_{i}}=\operatorname{ker}\left(A-\lambda_{i} I\right)
$$

i.e. each generalized eigenspace is actually an eigenspace. Therefore there is a basis of eigenvectors of A for \mathbb{C}^{n} and A is diagonalizable.
4. (i) We have $p_{A}(\lambda)=(\lambda-1)(\lambda+2)^{3}$, hence the eigenvalues are 1 and -2 with corresponding multiplicities 1 and 3 . The corresponding eigenspaces are $\operatorname{ker}(A-I)$ and $\operatorname{ker}(A+2 I)^{3}$ with bases $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\right\}$ and $\left\{\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$.
(ii) It is clear from the given that \mathbb{C}^{4} is the direct sum of the two generalized eigenspaces.
(iii) Since A is upper triangular, we have $L=D=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2\end{array}\right)$ and $S=I$.
(iv) We have $N=A-L=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. We can check that $N L=L N$
and $N^{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ and $N^{3}=0$.
(v) We have

$$
\begin{gathered}
\exp (t A)=\exp (t L) \exp (t N)=\left(\begin{array}{cccc}
e^{t} & 0 & 0 & 0 \\
0 & e^{-2 t} & 0 & 0 \\
0 & 0 & e^{-2 t} & 0 \\
0 & 0 & 0 & e^{-2 t}
\end{array}\right)\left(I+t N+\frac{t^{2} N^{2}}{2}\right)= \\
=\left(\begin{array}{cccc}
e^{t} & 0 & 0 & 0 \\
0 & e^{-2 t} & 0 & 0 \\
0 & 0 & e^{-2 t} & 0 \\
0 & 0 & 0 & e^{-2 t}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & t & -t+\frac{t^{2}}{2} \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)= \\
=\left(\begin{array}{cccc}
e^{t} & 0 & 0 & 0 \\
0 & e^{-2 t} & t e^{-2 t} & \left(-t+\frac{t^{2}}{2}\right) e^{-2 t} \\
0 & 0 & e^{-2 t} & t e^{-2 t} \\
0 & 0 & 0 & e^{-2 t}
\end{array}\right)
\end{gathered}
$$

5. (i) We have $p_{A}(\lambda)=(\lambda+i)^{2}(\lambda-i)^{2}$, hence the eigenvalue are i and $-i$ with corresponding multiplicities 2 and 2 . The corresponding eigenspaces are $\operatorname{ker}(A+i I)^{2}$ and $\operatorname{ker}(A-i I)^{2}$ with bases $\left\{v_{1}=\left(\begin{array}{l}i \\ 1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}0 \\ 0 \\ i \\ 1\end{array}\right)\right\}$ and $\left\{v_{3}=\left(\begin{array}{c}-i \\ 1 \\ 0 \\ 0\end{array}\right), v_{4}=\left(\begin{array}{c}0 \\ 0 \\ -i \\ 1\end{array}\right)\right\}$.
(ii) It is not hard to see that $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent (they are pairwise orthogonal), hence give a basis for \mathbb{C}^{4}, which is therefore the direct sum of the two eigenspaces.
(iii) By the definition of L we get

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=-\frac{i}{2} v_{1}+\frac{i}{2} v_{3} \Rightarrow L\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=-\frac{1}{2} v_{1}-\frac{1}{2} v_{3}=\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right)
$$

This gives us the first column of L. Similarly we obtain

$$
L=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

The v_{i} 's give the columns of S and thus

$$
S=\left(\begin{array}{cccc}
i & 0 & -i & 0 \\
1 & 0 & 1 & 0 \\
0 & i & 0 & -i \\
0 & 1 & 0 & 1
\end{array}\right)
$$

We may find that $D=S^{-1} L S=\left(\begin{array}{cccc}-i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & i\end{array}\right)$.
(iv) We have $N=A-L=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. We can verify that $N L=L N$ and $N^{2}=0 \Rightarrow N^{4}=0$.
(v) As in the previous exercise, we have

$$
\begin{aligned}
& \exp (t A)=\exp (t L) \exp (t N)=S \exp (t D) S^{-1}(I+t N)= \\
&=S\left(\begin{array}{cccc}
e^{-i t} & 0 & 0 & 0 \\
0 & e^{-i t} & 0 & 0 \\
0 & 0 & e^{i t} & 0 \\
0 & 0 & 0 & e^{i t}
\end{array}\right) S^{-1}\left(\begin{array}{cccc}
1 & 0 & t & 0 \\
0 & 1 & 0 & t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)= \\
&=\left(\begin{array}{cccc}
\cos t & \sin t & t \cos t & t \sin t \\
-\sin t & \cos t & -t \sin t & t \cos t \\
0 & 0 & \cos t & \sin t \\
0 & 0 & -\sin t & \cos t
\end{array}\right)
\end{aligned}
$$

